Once again it has been many months since I have posted anything. Since then we have obviously been dealing with the pandemic as well as learning the impact of a weak cybersecurity policy. Although I could probably write a novel regarding the cybersecurity issue there are many more expert people on that topic.
Today I want to go back to the original purpose of this blog that was to capture and share some random thoughts related to the industry.
One of the latest events that started the wheels turning in my head again was the partial shutdown of the Texas electrical grid. Again there are experts in grid design and operation who can, and have, discussed this event in great technical detail. There has also been the, now expected, political finger pointing and partisan debates. But I wanted to share some of those random thoughts about what this "localized" event might teach us.
Many engineers, especially those involved in critical HVAC infrastructure, are already aware of the fragile nature of the electrical grid in many parts of the US. At Mestex we provide systems to many different types of applications where a power outage could have a costly impact. Preparing for those potential failures was usually someone else's problem. The electrical engineers and suppliers of standby power systems were intended to handle the "short" periods without electrical power. Although we researched ways to integrate backup operation into our equipment the results would have proven too expensive to be marketable. What Mestex has continued to focus on is applying systems that try to utilize "site resources" efficiently in order to reduce the demands on the backup systems.
Looking at a broader picture we have seen the global trend toward "electrification". The goal, it seems, is to reduce greenhouse gases and other atmospheric pollutants that contribute to climate change. While some are still skeptical about climate change it has reached the point of a consensus among scientists around the world. Many countries and large corporations are on board with taking steps to mitigate their impact. Electrification is intended to move the source of pollutants away from the "site" where power is used to the "source" where power is generated. In theory this would allow better control of contaminants at a single point instead of at hundreds or thousands of "site" points. This would also facilitate the use of alternative energy sources such as wind generators that would be difficult to implement at the "site" level. So we have a relative rush to requiring electrical vehicles, electric residential heating systems, and even electric commercial/industrial heating.
At the same time that electrification is moving forward in areas that the average person can see there is a convergence of our ever increasing digital life with our daily power consuming life. Data centers are being built and turned on almost daily around the world. To the average person this is great as it means they are always connected no matter where they go. This also helps the electrification effort by providing the opportunity for sophisticated remote traffic management, demand control power distribution, and "smart" home appliances. But the electrical power consumed by data centers is almost mind blowing to the average person. A single, moderately efficient, small data center can consume as much electrical power as five thousand homes. Clusters of large data centers (as is common due to scale and locale) can draw enough electrical power to support entire towns or even entire less populated countries.
When these data centers or data center clusters are inserted into an already fragile electrical grid they add a strain factor that was not anticipated when the power station was designed 20 or 30 years ago. Data centers can be designed, built, and activated in months versus power stations that require years to complete. It is inevitable that a mismatch of power supply and power demand will occur.
It seems to me that part of what the Texas experience showed us is, first, electric power is critical to basic life support facilities such as water and sanitation. My second thought is that as much thought and research should be put into the development of highly efficient, "clean", "site" energy systems as into the electrification idea. Off-loading the grid with effective "site" solutions could help with the balance of supply and demand on the grid. Many large companies have already taken steps with solar arrays over their parking lots, small-scale wind generators on site, or private co-generation plants. In most cases though these are extremely expensive solutions. Their implementations have been driven as much by corporate "green" initiatives as anything.
Companies should also not lose sight of current technologies that are still viable "site" solutions and counterbalances to grid overloads. Although Mestex has transformed itself over the last few years into generating more revenue from cooling solutions than from their traditional natural gas heating solutions most people still consider the company to be a gas heating company. In applications that require large amounts of outside air, or that simply move huge amounts of air that must be heated, a modern and efficient natural gas heating system is a much more "climate friendly" "site" solution than an equivalent electric heat "source" solution. Mestex can provide such systems based on their decades of manufacturing such systems and research into optimized digital control of such systems.
Engineers and companies can meet their goals of responsible environmental stewardship by keeping in mind the contribution of "site" solutions as they also work to meet the transition to greater electrification.